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LEITER TO THE EDITOR 

Families of strictly isospectral potentials 

Wai-Yee Keung-l, Uday P Sukhatmet, Qinmou Wangt§ and Tom D 
Imbo$ 
f Department of Physics, University of Illinois at Chicago, IL 60680, USA 
$ Center for Particle Theory, University of Texas at Austin, TX 78712, USA 

Received 31 July 1989 

Abstract. For any potential V ( x )  which holds n bound states, we use repeated supersym- 
metry transformations to construct an n-parameter family of ‘strictly isospectral’ potentials 
(identical eigenenergies, reflection and transmission amplitudes for all family members). 
We investigate how the shape and behaviour of various isospectral potentials changes as 
the n parameters are varied. Contained in this family are potentials with n widely separated 
wells, each of which holds a single bound state. 

Recently there have been many applications of supersymmetry (SUSY) [ 13 in quantum 
mechanics. New insights concerning the solutions of the one-dimensional time- 
independent Schrodinger equation have been obtained in areas such as solvable models 
[2], large-N expansions [3], WKB approximations [4], tunnelling [5] and S-matrix 
computations [6]. The supersymmetric approach used in the above applications 
essentially corresponds to the Darboux transformation [7] in the theory of second-order 
linear differential equations. The key step is the construction of a pair of supersymmetric 
partner potentials with the same energy eigenvalues except for the ground state. An 
interesting physical problem is to determine the most general form of a potential with 
specified energy eigenvalues and scattering matrix. It has been shown !ow supersym- 
metry allows one to construct a one-parameter family of potentials V,(A; x) strictly 
isospectral to an input potential V,(x) [8-111. In this letter, we generalise this idea 
and construct a much larger n-parameter family by repeated supersymmetry operations, 
where n is the number of bound states in the initial potential Vo(x). The generated 
family contains potentials which are str!ctly isospectral (they all have the same eigen- 
values, reflection and transmission amplitudes) [ 111. They are intimately connected 
with solutions of non-linear partial differential equations such as the Kdv equation 
[ 12-14]. Similar,results have also been obtained using the inverse scattering approach 
(for a review, see [15]). However, our approach is different and our final explicit 
formula for the n-parameter family of potentials is much simpler than the corresponding 
formula involving an n x n determinant obtained by solving the Gel’fand-Levitan- 
Marchenko integral equation by various methods [ 15,161. 

Starting with a potential Vo(x) with the ground state +bo at energy Eo,  we first 
generate the SUSY partner potential VI which is almost isospectral to V,. VI has the 
same eigenvalues as V, except that it has no bound state at Eo. We have 

A.7 
U 

VI = V 0 - 2 7 1 n  +bo. 
dx 
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(The convention h = 2m = 1 is used throughout the letter.) This is the standard SUSY 
procedure for deleting the ground state of a potential. The reflection and transmission 
amplitudes of V, and V, are, of course, different but simply related [ l l ] .  The ground 
state I/J1 for the potential VI is located at energy E , .  The procedure can be repeated 
‘upward’, producing potentials V,, V,, . . . , with ground states I/J2, I/J3,. . . , at energies 
E * ,  E , ,  . . . , until the top potential V , ( x )  holds no bound state (see figure 1, which 
corresponds to n = 2). Although the potential VI does not have an eigenenergy E,, 
the function l/$, satisfies the Schrodinger equation with potential VI and energy E, .  
The other linearly independent solution is j:, +i(x’) dx’/+,. Therefore, the most 
general solution of the Schrodinger equation for the potential V, at energy Eo is 

@,(A,) = (.a,+ A,)/+, 

where 

9, = lx +:(x’) dx’. 
-U2 

Now, starting with a potential V,, we can again use the standard SUSY procedure [9] 
to add a state at Eo by using the general solution @,(Ao) 

d2 
dx  

Qo(,i0) = V, - 2  7 ln Q ~ ( A , ) .  

The function l/Qo(A0) is the normalisable ground-state wavefunction of Qo(Ao), pro- 
vided [ l l ]  that A, does not lie in the interval - l s A o s O .  Therefore, we find a 
one-parameter family of potential Q,(A,) isospectral to V, for A,> o or A,< -1 :  

d2 
dx  

= V, - 2 7 ln(9,+ A,). 

Note that this family contains the original potential V,. This corresponds to the choices 
A o +  *W. Also, V, an$ Qo(A,) have the same reflection and transmission amplitudes, 
that is f f ( k ) = R ( k ) ,  T ( k ) =  T ( k )  [ l l ] .  

In order to produce a two-parameter family of isospectral potentials, we go from 
V, to V, to V2 by successively deleting the two lowest states of V, and then we re-add 

----- ------ - ----_----- ---- ------ 
90 QolA,) = ( J ’ ~ + A J / $ ~  Q o ( A o , A i I  $ / Q o ( A o t A > )  

Figure 1. Schematic diagram showing the SUSY transformation for deleting two states and 
re-adding them, thus producing a two-parameter ( A o ,  A , )  isospectral family. 
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the two states at El and Eo by SUSY transformations. The most general solutions of 
the Schrodinger equation for the potential V2 are given by @ , ( A , ) = ( 9 1 + A l ) / ~ l  at 
energy El ,  and Al@,(Ao) at energy Eo (see figure 1). Here the SUSY operator Ai relates 
solutions of V, and V,+I 

d 
dx 

Ai=--(lnI,hi)’. 

The prime denotes differentiationA with respect to x. Then, as before, we find an 
isospectral one-parameter family Vl(A ,) 

d2 
dx Cl ( A  = VI - 2 7 In( 9 , + A ), 

The solutions of the Schrodinger equation for potentials V2 and Q l ( A 1 )  are related by 
a new SUSY operator 

d 
dx 

A;(A,) = --+(In @,(Al ) ) ’ .  

Therefore, the solution O0(Ao, A , )  at Eo for C l ( A 1 )  is 

@o(Ao, A I )  = ~;(Al)Al@o(Ao). 

The normalisable function l / Q 0 ( A o ,  A , )  is the ground state at Eo of a new potential, 
which results in a two-parameter family of isospectral systems Co(Ao, A I )  

d2 
CO(A0,  A , ) =  ~ o - 2 d x ’ I n ~ I , h o ~ l ~ l ~ A l ~ @ o ~ A o ,  A , ) )  

= vo- 2 dx’ In(ILo(91 + A  I ) @ O ( A O ,  A I ) )  
d2 

for A i  > 0 or Ai < -1. A useful alternative expression is 

Qo(Ao, A I = - QI ( A  I ) + 2(@8 A 0  , A I I/ @o( Ao , A 1 1)’ + 2 ~ 5 0 .  

The above procedure is best illustrated by the pyramid structure in figure 1. It can be 
generalised to an n-parameter family of isospectral potentials for an initial system with 
n bound states. The formulae for an n-parameter family are 

@ i  ( A i  ) = (4, + Ai )/ +i i =O,. . . , n- 1 

d 
dx 

Ai =-+(In I ,hi)’  
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The above equations summarise the main results of this letter. Note that although all 
the results obtained are on the full line (-CO < x < CO), they can be readily used for the 
half-line (0 < r < CO) corresponding to central potentials in three dimensions. In fact, 
we will study the example of the Coulomb potential later. 

As a first application, we consider potentials of the form 
Vo= - N ( N +  1) sech2 x 

where N is an integer. These potentials are of special physical interest since they are 
reflectionless as well as shape invariant [2, 171. Vo holds N bound states, and we may 
form an N-parameter family of isospectral potentials. We start with the simplest case 
N = 1. We have V, = -2 sech' x, Eo = -1 and I)o = 2-I" sech(x). The corresponding 
1-parameter family is 

Qo(Ao) = -2 sech2(x+t l n ( l+  l / A o ) ) .  

Clearly, varying the parameter A, corresponds to translations of Vo(x). As A. 
approaches the limits Oc (Pursey limit [9]) and -1- (Abraham-Moses limit [lo]), the 
minimum of the potential moves to --CO and +a respectively. 

For the case N = 2, V, = -6 sech' x and there are two bound states at Eo = -4 and 
El = - 1. The SUSY partner potential is VI = -2 sech2 x. The ground-state wavefunctions 
of Vo and VI are $o=( f i /2 ) sech2x  and $,=(l/v'?) sech(x). Also, 
a(3 tanh x - tanh' x + 2 )  and 9, = t(tanh x +  1). After some algebraic work, we obtain 
the two-parameter family 

[ 3 + 4 cosh( 2~ - 261) + c o s h ( 4 ~  - 2&)] 
[cosh(3~-6 , -60)+3 cosh(x+61-60)]2 

Q O ( A 0 ,  A,)=-12 

6, = -: In( 1 + 1/hi)  i = l , 2 .  
As we let A o +  -1, a well with one bound state at Eo will move in the x direction, 
leaving behind a shallow well with one bound state at E , .  The movement of the 
shallow well is essentially controlled by the parameter A , . Thus, we have the freedom 
to move either of the wells?. 

For the case N = 3, Vo = -12 sech' x and the potential has three bound states at 
Eo = -9, E ,  = -4 and E, = -1. Following the above algorithm, we compute a three- 
parameter isospectral family. In figure 2, we plot Qo(Ao, A , ,  A2)  for the choices A o =  A ,  = 
A 2  = A =CO, -1.0001. The potential for A =cc is just the initial potential Vo, whereas 
for A = -1.0001, we see three separated wells, each holding one bound state. If only 
a single parameter Ai is taken to the limiting value -1 (keeping other parameters 
arbitrary), then only one well, having a bound state at energy Ei ,  moves to x =CO. It 
can be shown [14] that this well has the form V(x) = -2a2 sech2(ax), (Y =a. From 
the above discussion we can conclude that this separation into many wells is also true 
for general potentials. 

As a second example we consider the Coulomb potential. The s-wave effective 
potential is Vo( r )  = -e2/r where we choose e' = 2. Its SUSY partner is VI( r )  = 2/ r2 - 2/ r. 
The ingredients for constructing a two-parameter family eo( A,,, A are Eo = - 1, 

1 -e- '( l+ r+f r2+ar3+hr4) .  We can construct the two-parameter family Qo(Ao, A , )  
from this information. In figure 3, we have plotted some of the members of the 
two-parameter family. Keeping A. fixed at a value - 1.1, we have varied A The curves 

t If one chooses 6, = 321 and 6,  = 41, 9 is the well known two-soliton solution of the Kdv equation. The 
potentials shown in figure 2 are related to the three-soliton solution. These issues are discussed in [14]. 

E , --1 - 4, q o = 2 r  eCr, I)1 = r2 e-"*/v%, $o= 1 -e-2r(1+2r+2r2),  and = 
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Figure 2. Isospectral three-parameter family Po(&, A , ,  A 2 )  for the input potential V ( x )  = 
-12 sech2 x (broken curve) which holds three bound states. We show the case A, = A , = A z  = 
-1.OOO1 (full curve). 
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- 1 . 5  

- 2 . 0  

r 
Figure 3. Isospectral two-parameter family for the input Coulomb potential V ( r )  = - 2 / r  
(dotted curve). We show the cases A ,  = -1.1 (full curve) and A ,  = -1.001 (broken curve) 
for fixed A,= -1.1. 

correspond to A ,  = -1.1, -1.001. These choices illustrate how the shallower well with 
bound state at E, = -a moves to r = CO as A ,  + -1. 

In conclusion, we have shown how to construct an n-parameter family of isospectral 
potentials for any given Vo(x)  using supersymmetry transformations?. If V, (x )  is 

t In this letter we have restricted our attention to adding and deleting states using SUSY. Two other closely 
related procedures are that of Puney [9] and Abraham-Moses [lo]. By combining these procedures, other 
distinct n-parameter isospectral families can be found, but they have different phase shifts. This point is 
discussed in [18]. 
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exactly solvable (or quasi-exactly-solvable) [ 141, then our procedure yields an n- 
parameter family of new solvable potentials. These potentials can be useful starting 
points for perturbation theory calculations. We have also used them to construct 
explicit, pure multi-soliton solutions of the Kdv and other non-linear evolution 
equations. 

This research was supported by the US Department of Energy. 
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